Boolean topological graphs of semigroups

°Michał Stronkowski •Belinda Trotta

Warsaw University of TechnologyAGL Energy in Melbourne

BLAST, August 2013

▲ロト ▲帰ト ▲ヨト ▲ヨト ヨー のくぐ

universal Horn classes

uH-sentences look like

$$\begin{array}{l} (\forall \bar{x}) \left[\varphi_1(\bar{x}) \land \dots \land \varphi_n(\bar{x}) \to \varphi(\bar{x}) \right] \\ \\ \text{or like} \qquad (\forall \bar{x}) \left[\neg \varphi_1(\bar{x}) \lor \dots \lor \neg \varphi_n(\bar{x}) \right] \end{array}$$

where $\varphi_i(\bar{x})$, $\varphi(\bar{x})$ are atomic formulas.

uH-classes look like Mod(uH-sentences).

The uH-class generated by a class \mathcal{K} equals SP⁺P_U(\mathcal{K}).

uH-class \mathcal{H} is finitely axiomatizable (finitely based) if $\mathcal{H} = Mod(\Sigma)$ for some finite set Σ of uH-sentences.

,

graph of semigroups

The graph of a semigroup $\mathbf{S} = (S, \cdot)$ is NOT a graph. It is the relational structure

$$\mathsf{G}(\mathbf{S}) = (\mathsf{S},\mathsf{R}),$$

where

$$(a, b, c) \in R$$
 iff $a \cdot b = c$.

For a class C of semigroups let $G(C) = \{G(S) \mid S \in C\}$.

Theorem (Gornostaev, S)

Let C be a class of semigroups possessing a nontrivial member with a neutral element. Then SP⁺P_UG(C) is not finitely axiomatizable.

pseudoProof

Fact

Let \mathcal{H} be a finitely axiomatizable uH-class of relational structures. Then there is a finite *n* such that for each relational structure **M** we have

$$\mathbf{M} \in \mathcal{H}$$
 iff $(\forall \mathbf{N} \leq \mathbf{M}) [|N| \leq n \rightarrow \mathbf{N} \in \mathcal{H}].$

Thus it is enough to construct for each n a structure M_n such that

- M_n ∉ SG(Semigroups),
- if $\mathbf{N} \leq \mathbf{M_n}$ and $|N| \leq n$, then $\mathbf{N} \in SPG(\mathcal{C})$.

construction of M_n

Elements of M _k		Elements of Z ₂ ⁿ⁺⁶	_
a		1100 000000000	0
a ₁		0011 000000000	0
a ₀	\rightarrow	1010 000000000	0
a ₁		0101 000000000	0
b	\rightarrow	1111 000000000	0
C ₀		0000 100000000	0
C1		0000 010000000	0
		0000 000100000	~
Qk - 1	\rightarrow	0000 000···100···000 0000 000···001···000	0 0
Q _{k+1}		0000 000001000	U
Cn		0000 000000001	0
d ₀		0011 100000000	0
d ₁		0011 110000000	0
d _{k-1}		0011 111100000	0
d _k	\rightarrow	0011 111110000	1
d _{k+1}		0011 111111000	1
dn		0011 111111111	1
d ₀		0101 100000000	0
d ₁		0101 110000000	0
d _{k-1}		0101 111100000	0
d _k	-	0101 111110000	0
d _{k+1}		0101 111111000	0
			~
d _n		0101 111111111	0
e	\rightarrow	1111 111111111	1

Table . The mapping j_k . Elements of \mathbb{Z}_2^{n+6} are represented as words over \mathbb{Z}_2 . For the sake of darity we divided these words into 3 segments of length 4, n + 1 and 1 respectively. In the second segment (k - 1)th, kth and (k + 1)th digits are placed between dots.

pseudoProof

Fact

Let \mathcal{H} be a finitely axiomatizable uH-class of relational structures. Then there is a finite *n* such that for each relational structure **M** we have

$$\mathbf{M} \in \mathcal{H}$$
 iff $(\forall \mathbf{N} \leq \mathbf{M}) [|N| \leq n \rightarrow \mathbf{N} \in \mathcal{H}].$

Thus it is enough to construct for each n a structure M_n such that

- M_n ∉ uHG(Semigroups),
- if $\mathbf{N} \leq \mathbf{M_n}$ and $|N| \leq n$, then $\mathbf{N} \in uHG(\mathcal{C})$.

Belinda's guess

Maybe it lifts to a topological setting.

Boolean core of a uH-class

Boolean core of ${\mathcal H}$ is

$$\mathcal{H}_{BC} = \mathsf{S_c}\mathsf{P}^+(\mathcal{H}_{\mathit{fin}})$$

 \mathcal{H}_{fin} - finite structures from $\mathcal H$ with the discrete topology P^+ - the nontrivial product class operator S_c - the closed substructure class operator

Example

Priestley spaces = $S_C P^+(\{0,1\},\leqslant) = SP^+(\{0,1\},\leqslant)_{BC}$.

Facts

- ► Every member of *H*_{BC} has Boolean topology (compact, Hausdorff, totally disconnected).
- \mathcal{H}_{BC} consists of all profinite structures built, as inverse limits, from finite members of \mathcal{H} .

General problem

Axiomatize \mathcal{H}_{BC} among all structures with Boolean topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Clark, Krauss)

Topological quasivarieties may be described by an extension of uH-logic imitating topological convergence.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

But it is a nasty and awkward infinite logic.

Is there a better logic?

standardness

 ${\cal H}$ is standard if ${\cal H}_{BC}$ consists of all Boolean topological structures with reducts in ${\cal H}.$

If $\mathcal H$ is standard, then $\mathcal H_{BC}$ is axiomatizable by uH-theory of $\mathcal H.$

Theorem (Numakura)

The variety of all semigroups is standard.

Theorem (Clark, Davey, Haviar, Pitkethly, Talukder)

Every variety with finitely determined syntactic congruences is standard.

Examples: all varieties of semigroups, monoids, groups, rings, varieties with definable principal congruences.

Theorem (Nešetřil, Pultr, Trotta)

Finitely generated uH-class of simple graphs is standard iff it is one of \emptyset , SP(\bullet), SP(\bullet \bullet), SP(\bullet — \bullet).

technique for disproving standardness

A (surjective) inverse system over ω is a collection of structures \mathbf{M}_n , $n \in \omega$, together with (surjective) homomorphisms $\varphi_n \colon \mathbf{M}_{n+1} \to \mathbf{M}$. Its inverse limit is

$$\underset{\leftarrow}{\lim} \mathbf{M}_n = \{ a \in \prod_{n \in \omega} M_n \mid (\forall n) \varphi_n(a(n+1)) = a(n) \}$$

with structure and (Boolean) topology inherited from the product

 $\mathbf{M} = \underset{\longleftarrow}{\underset{\longleftarrow}{\lim}} \mathbf{M}_n \text{ is pointwise non-separable with respect to } \mathcal{H} \text{ if there}$ is a predicate R and a tuple $\bar{b} \in M - R^{\mathbf{M}}$ such that for every homomorphism $\psi \colon \mathbf{M}_n \to \mathbf{N} \in \mathcal{H}$ we have $\psi(\bar{b}(n)) \in R^{\mathbf{N}}$.

Theorem (Clark, Davey, Jackson, Pitkethly)

Assume that $\mathbf{M} = \underset{\leftarrow}{\lim} \mathbf{M}_n$, a surjective inverse limit of finite structures, is pointwise non-separable with respect to \mathcal{H} and every *n*-element substructure of \mathbf{M}_n is in \mathcal{H} . Then \mathcal{H} is non-standard.

Theorem (S, T)

Let $\mathcal{H} = SP^+P_UG(\mathcal{C})$ be the uH-class generated by a class $G(\mathcal{C})$ of graphs of semigroups possessing a nontrivial member with a neutral element. Then \mathcal{H} is non-standard - \mathcal{H}_{BC} is not definable in uH-logic.

pseudoProof

Structures \mathbf{M}_n from non-finite axiomatization proof may be slightly modified and connected by homomorphism, thus giving a needed inverse system.

first order definability

Maybe \mathcal{H}_{BC} is fo-definable?

Example (Clark, Davey, Jackson, Pitkethly)

Let ${\bm L}$ be a finite structure with a lattice reduct. Then ${\sf S}_c{\sf P}({\bm L})$ is first order definable. But there are some non-standard ${\sf S}_c{\sf P}({\bm L}).$

Example (Stralka, Clark, Davey, Jackson, Pitkethly)

Priestley spaces form a non-fo definable class.

pseudoProof

Because there exists Stralka space (C, \leq) :

- C Cantor space
- \leqslant cover or equal relation

 (C,\leqslant) is a union of copies of $(\{0\},=)$ and $(\{0,1\},\leqslant)$ but it is NOT a Priestley space.

techniques for disproving fo-definability

A topological space is a λ -space, $\lambda \in \mathbb{N}$, if it is a disjoint union of at most λ pieces each of which is either a one point or one point compactification of a discrete topological space.

Theorem (Clark, Davey, Jackson, Pitkethly)

Let \mathcal{H} be non-standard, witnessed by **M** (**M** has Boolean topology an the relational reduct in \mathcal{H}). If

▶ up to isomorphism, M has only finitely many connected components and all them are finite (1st technique)

or

 M has a λ-topology + some technical condition (2nd technique)

then \mathcal{H}_{BC} is not fo-definable.

lack of fo-definablility

Theorem (S, T)

Let $\mathcal{H} = SP^+P_UG(\mathcal{C})$ be the uH-class generated by a class $G(\mathcal{C})$ of graphs of semigroups possessing a nontrivial member with a neutral element. Then \mathcal{H}_{BC} is not fo-definable.

pseudoProof

- If ({0,1}, ∨) ∈ C, then 1st technique applies to a modification of Stralka space.
- If (Z_k, +) ∈ C or (N, +) ∈ C, then 2nd technique applies to M constructed for disproving standardness.

General problem

Axiomatize \mathcal{H}_{BC} among all structures with Boolean topology.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

What about monadic second order logic?

This is all

Thank you!